The Role of the Inner Product in Stopping Criteria for Conjugate Gradient Iterations
نویسندگان
چکیده
Two natural and efficient stopping criteria are derived for conjugate gradient (CG) methods, based on iteration parameters. The derivation makes use of the inner product matrix B defining the CG method. In particular, the relationship between the eigenvalues and B-norm of a matrix is investigated, and it is shown that the ratio of largest to smallest eigenvalues defines the B-condition number of the matrix. Upper and lower bounds on various measures of the error are also given. The compound stopping criterion presented here is an obvious “default” in software packages because it does not require any additional norm computations.
منابع مشابه
A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملControlling Inner Iterations in the Jacobi-Davidson Method
The Jacobi–Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate) solution of inner linear systems to progress, in an outer iteration, towards a particular solution of the eigenproblem. In this paper we prove a relation between the residual norm of the inner linear system and the residual norm of the eigenvalue problem. We show that the latter may be estima...
متن کاملStopping Criteria for Adaptive Finite Element Solvers
We consider a family of practical stopping criteria for linear solvers for adaptive finite element methods for symmetric elliptic problems. A contraction property between two consecutive levels of refinement of the adaptive algorithm is shown when the a family of smallness criteria for the corresponding linear solver residuals are assumed on each level or refinement. More importantly, based on ...
متن کاملInner solvers for interior point methods for large scale nonlinear programming
This paper deals with the solution of nonlinear programming problems arising from elliptic control problems by an interior point scheme. At each step of the scheme, we have to solve a large scale symmetric and indefinite system; inner iterative solvers, with adaptive stopping rule, can be used in order to avoid unnecessary inner iterations, especially when the current outer iterate is far from ...
متن کاملInexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration
An important variation of preconditioned conjugate gradient algorithms is inexact precon-ditioner implemented with inner-outer iterations 5], where the preconditioner is solved by an inner iteration to a prescribed precision. In this paper, we formulate an inexact preconditioned conjugate gradient algorithm for a symmetric positive deenite system and analyze its convergence property. We establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999